
FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Bachelorarbeit in Wirtschaftsinformatik

Extension of an Enterprise 2.0 Platform to
Support User Activity Awareness

Rainer Niedermayr

FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Bachelorarbeit in Wirtschaftsinformatik

Erweiterung einer Enterprise 2.0 Plattform um
Funktionen für die Sichtbarkeit von Benutzeraktivitäten

Extension of an Enterprise 2.0 Platform to Support User
Activity Awareness

Author: Rainer Niedermayr
Supervisor: Prof. Dr. Florian Matthes
Advisor: Dr. Thomas Büchner
Submission Date: August 24, 2011

I assure the single handed composition of this bachelor’s thesis only supported by
declared resources.

Munich, August 24, 2011 Rainer Niedermayr

Abstract

More and more companies use enterprise 2.0 platforms to enable collaboration and man-
agement of their knowledge. Most platforms have a component which allows for tracing
changes. Thereby, it facilitates users to be aware of the activities of others and to keep up
to date with the latest information.

This thesis is about the development of such an awareness component for the platform
Tricia. It includes the detection of the requirements, the design decisions, the creation of
the graphical user interfaces, and the efficient implementation in its core.

The developed component provides both pull and push functionalities: Users can watch
objects and retrieve a list including the recent changes of watched or of all accessible ob-
jects (pull). Mail notifications (push) which are sent periodically and summarise changes
round it off.

Keywords: Awareness, Change Tracking, Enterprise 2.0, Tricia

iv

Contents

Abstract iv

1 Introduction 1
1.1 Social Software . 1
1.2 Event-based Awareness . 2
1.3 Goal of this Thesis . 3
1.4 Structure of this Thesis . 3

2 Fundamentals 5
2.1 Architecture of Tricia . 5

2.1.1 Model . 5
2.1.2 View . 8
2.1.3 Controller . 8
2.1.4 Plugins . 9

2.2 Model Representation of User Activity . 10
2.3 Full-text Indexing . 11

3 Analysis and Design 12
3.1 Requirements . 12
3.2 UI Presentation of Changes . 13

3.2.1 AbstractGroupMembershipChange 14
3.2.2 DomainValueChange . 15
3.2.3 SimpleValueChange . 16
3.2.4 TagsChange . 17
3.2.5 HybridPropertyChange . 18
3.2.6 RichStringChange . 19
3.2.7 RoleChange . 22

3.3 Aggregation of Changes . 23
3.4 Dashboard . 24

3.4.1 Realisations in other Systems . 25
3.4.2 Planned Implementation in Tricia . 25

3.5 Recent Changes . 27
3.5.1 Realisation in other Systems . 27
3.5.2 Planned Implementation in Tricia . 30

3.6 Mail Notification . 32
3.6.1 Realisations in other Systems . 32
3.6.2 Planned Implementation in Tricia . 32

4 Implementation 34

v

Contents

4.1 Presentation of Changes . 34
4.1.1 Template . 34
4.1.2 Substitution . 35

4.2 HTML comparison with TriciaDiff . 36
4.2.1 StructureAnalyzer . 37
4.2.2 StructureConsolidator . 39
4.2.3 HtmlGenerator . 42
4.2.4 Abbreviator . 43

4.3 Aggregation of Similar Change Sets . 44
4.4 Change Awareness . 46

4.4.1 Event Stream . 46
4.4.2 New User Interfaces . 49
4.4.3 Mail Notification Service . 53

5 Summary 57

Bibliography 59

List of figures 62

Listings 63

vi

1 Introduction

The amount of available information grows at a rapid pace. In addition, the complexity
and dynamics of any business is also on the increase. The research confirms productivity
problems in information management within enterprises. These are caused by searching,
duplicate work, inconsistencies, and outdated or wrong information. [infa]

Therefore, technology is needed, which facilitates successful collaboration. Social soft-
ware provides the central functionalities such as information sharing, knowledge of group
and individual activity, and coordination. [DB92]

1.1 Social Software

Coates (2005) describes the term social software as “software which supports, extends,
or derives added value from, human social behavior”. [Coa05] Social software can be
structured by its basic functionalities:

• The identity management allows users to present themselves on the web.

• The relationship management allows establishing and maintaining relationships.

• The information management allows handling (finding, evaluating and managing)
of information available on the web.

Figure 1.1 is known as the “social software triangle”. It contains the web 2.0 application
categories including blogs, wikis, social tagging and bookmarking applications, social net-
working, and instant messaging, which are classified by the three basic functionalities.

Enterprise 2.0 is the use of these applications within an organisation to connect the em-
ployees. McAfee summarises the six components of enterprise 2.0 technologies in the
acronym SLATES (search, links, authoring, tags, extensions, signals): [McA06]

• A search function must exist thanks to which users should find what they are looking
for.

• Web pages are connected via links, users must be able to add and edit links.

• Authoring: Users can contribute knowledge, insights, experiences, comments. . . The
content can be cumulative (blogs: individual posts accumulate over time) or iterative
(wikis: many people work on the same data).

• Tags are simple one-word descriptions to characterise the content. The categorisation
system formed by the tags is called a “folksonomy”.

• Extensions provide intelligent content suggestions by mining patterns and user ac-
tivity.

1

1 Introduction

Figure 1.1: Social software triangle by Koch/Richter [KR07]

• Signals describe a component which keeps users up to date by sending them notifi-
cations if and when new or edited content of their interest appears.

[KR07] [ZDN]

1.2 Event-based Awareness

Platforms with a signal component are also called “social awareness systems”. Their pur-
pose is to “help connected individuals or groups to maintain a peripheral awareness of the
activities and the situation of each other.” [ISG09]

The users can take on the roles of senders or receivers. Senders add or update informa-
tion on the platform and want to let other interested people know about that. The receivers
are people or systems, who receive notifications concerning these changes. The decoupling
of these two groups is an important concept behind awareness systems. Senders and the
receivers are independent and don’t know have to know each other. They are separated by
a system in the middle which acts as an intermediary information channeller. This system
is aware of all changes and tries to match changes in the user’s interests to identify the
target groups. Then it distributes the notifications to the recipients.

An event-based awareness system reduces the problems of information overloading and
distribution. Information overloading means that recipients receive too much information,
including irrelevant information. The term information distribution describes the problem
for the sender to identify the appropriate target group (with the risk of forgetting to inform
people about something important or to overload them with irrelevant information). In
addition, the awareness system allows people to discover information, they may not have
known existed.

2

1 Introduction

Khronika was the first implementation of such an event-based notification system. It
was developed in the early 1990s by Rank Xerox EuroPARC, the European research center
of Xerox in Cambridge. Khronika implements a shared network server that notifies people
about events. The server acts as an intermediary between senders and recipients. Senders
are in charge of feeding the system with information and keeping it updated whereas the
recipients determine what kind of information they are interested in. The recipients do this
by submitting daemons which contain constraint sets expressing their personal interests.
Khronika monitors and stores events from the senders. Then it matches the events with
the recipient’s interests and generates notifications which are delivered to the identified
target group.

[Löv91] [DBMM93] [RM09]

1.3 Goal of this Thesis

Tricia1 is an enterprise 2.0 software system developed by infoAsset. The platform covers
the following features:

• Hybrid wiki: A wiki is a website which is collaboratively used by multiple users.
It contains pages which can be edited by anyone. The concept of hybrids supple-
ments wikis by providing possibilities to add structured content through key-value-
attributes.

• Blogs: A blog contains posts which are displayed in a reverse-chronological order.

• File and directory sharing: It is possible to upload, view and download files.

• Social networking: Users can be members in groups and inherit access policies.

[infb]
These features improve the collaboration of employees in a company. However, al-

though a prototype view which shows the latest ten user edits exists, no major awareness
functionalities are available as yet.

The goal of this thesis is to extend the core of Tricia by an awareness component, which
allows changes to be traced. The component will help users to be aware of the activities
of others and facilitate them to keep up to date with the latest information. This thesis
elucidates the detected requirements, the design decisions taken, and the implementation.

1.4 Structure of this Thesis

The structure of this thesis is as follows:

Chapter 1 gives a theoretical reflection on awareness in social software. It describes the
concept of the decoupling of sender and receiver and points out the additional value of an
awareness component for an enterprise 2.0 platform.

1http://www.infoasset.de/

3

http://www.infoasset.de/

1 Introduction

Chapter 2 covers the fundamentals of Tricia. It focuses on concepts which are relevant
for the implementation of the new awareness functionalities.

Chapter 3 describes the results of the analysis and design phases. It contains the detected
requirements for an awareness component embedded in Tricia, similar implementations
in other enterprise 2.0 systems, design decisions, and drafts for the user interfaces.

Chapter 4 presents the implementation details of the developed components.

Chapter 5 summarises the results of this thesis and shows further possible extensions.

4

2 Fundamentals

This chapter gives an insight into Tricia and into the Lucene library. It focuses on concepts
which are relevant for the implementation of the new awareness functionalities.

2.1 Architecture of Tricia

Tricia’s architecture realises the model-view-controller pattern with the following compo-
nents:

• model: So-called assets are mapped to an object/relational persistence database.

• view: A template system is in charge of the presentation.

• controller: Handlers are an abstraction for defining control flows.

2.1.1 Model

Tricia follows a data model driven approach. Important concepts of this approach are the
entities and so called mixins.

Entities

Domain objects are represented by subclasses of Entity. Entity itself inherits the more
generic class Asset. Entities can have properties, methods and relations to other assets.
Different property types such as StringProperty, BooleanProperty, IntProperty,
DateProperty. . . exist (see figure 2.1). Relations between assets can be expressed with
roles whereas a role definition in an entity specifies the other end of an association. The
multiplicity is defined by the used role class: A OneRole association end references one
single entity, a ManyRole models a multi-valued association.

Entities which are persisted to the database inherit the entities’ subclass
PersistentEntity. Each persistent entity class is mapped onto a database table with a
column for each property. Any persisted object can be uniquely identified by its UID.

Mixins

One advance of inheritance is the reuse of an implementation. However, in Java a class
cannot inherit more than one super class. This limitation avoids a comprehensive reuse
model as desired if it is not possible to partition the functionality into one inheritance
structure. Tricia works around this limitation via so-called mixins. A mixin inherits Asset

1http://www.infoasset.de/file/attachments/wikis/javadoc-import-wiki/
platform-documentation-entitiespart1doc/entity-property.png

5

http://www.infoasset.de/file/attachments/wikis/javadoc-import-wiki/platform-documentation-entitiespart1doc/entity-property.png
http://www.infoasset.de/file/attachments/wikis/javadoc-import-wiki/platform-documentation-entitiespart1doc/entity-property.png

2 Fundamentals

Figure 2.1: Property types in Tricia1

and can define properties, methods and relations to other assets. It extends a base entity;
the functionality can be used by adapting the base entity to the mixin type. Two types of
mixins exist; the mandatory mixins are assigned statically to an entity, optional mixins can
be assigned and/or removed at runtime to/from an object.

Important mandatory mixin types in Tricia are:

• Linkable: This mixin holds an entities’ incoming and outgoing links.

• ReadProtected: It concerns read rights on entities.

• Modifiable: It concerns write rights on entities.

• Versionable: This mixin keeps a version history of an entity. It is assigned to each
persistent entity by default.

• InSpace: It defines the space an entity is contained in.

Spaces

A space is a kind of a container object. It has a name and contains logically coherently data.
A space is represented by a persistent entity with the mixin Space. Each content item has
the mixin InSpace.

Known types of spaces are the wiki which contains wiki pages, the blog containing blog
entries and the directory containing subdirectories and documents (files).

Users and Groups

The concept of groups exists in Tricia. Groups describe organizational roles and structures
and help to administrate users. A group can be described as a composite; it has users

2http://www.infoasset.de/file/attachments/wikis/javadoc-import-wiki/
platform-documentation-entitiespart3doc/mixinAsset.png

6

http://www.infoasset.de/file/attachments/wikis/javadoc-import-wiki/platform-documentation-entitiespart3doc/mixinAsset.png
http://www.infoasset.de/file/attachments/wikis/javadoc-import-wiki/platform-documentation-entitiespart3doc/mixinAsset.png

2 Fundamentals

Figure 2.2: Classes Asset, Entity and Mixin2

and/or groups as members. A membership grants the member all rights which are stipu-
lated for the group. The two built-in groups “Registered Users” and “Everybody” already
exist.

Figure 2.3: Group structure in Tricia3

Access Policies

Tricia implements access control lists which allow configurable policies: Each entity has a
list of editors that are able to view and edit it, and a list of readers that can only view and
find it. Entities inherit the access rights of their space or their parent object (if there is any),
but it is possible to add editors and to override readers. The specified readers or editors
are users and/or groups.

3http://www.infoasset.de/file/attachments/wikis/hilfe/inhalte-und-bereiche/
Content%20and%20Spaces.PNG

7

http://www.infoasset.de/file/attachments/wikis/hilfe/inhalte-und-bereiche/Content%20and%20Spaces.PNG
http://www.infoasset.de/file/attachments/wikis/hilfe/inhalte-und-bereiche/Content%20and%20Spaces.PNG

2 Fundamentals

2.1.2 View

Tricia has its own templating language which enforces the separation of presentation and
logic.

Templates

A template is an html file with formatted content which contains placeholders. The place-
holders are replaced at runtime with the actual content. In the template these are marked
by the character “$”.

The following example for a simple template file contains the placeholder $time$ which
will be replaced by the handler:

<html>
<head>

</head>
<body>

Current time: $time$
</body>

</html>

Listing 2.1: Simple template file

Substitutions

For each placeholder there is a substitution specified in the handler class. The substitution
logic is expressed by inner Java classes. Different types can be used:

• The print substitution replaces a placeholder with a string value.

• The conditional substitution is used to show or to hide a block of content.

• The list substitution allows replacing placeholders repeatedly for all items of a list.

• The template substitution replaces a placeholder with the evaluation of another tem-
plate. It permits the building of complex nested structures.

template.put("time", new PrintSubstitution()
{

@Override
protected String print()
{

return getTimeAsString();
}

});

Listing 2.2: Simple print substitution

2.1.3 Controller

The third component of the MVC pattern is the controller, which is responsible for the
program flow.

8

2 Fundamentals

Handler

The controller is represented by handlers. A handler is in charge of HTTP requests. At the
beginning of the handling process the session is identified and the client context initialised.
Then the dispatcher identifies the responsible handler class. This class checks at first if the
session is allowed to access it. After that - if the check returns a positive result - the business
logic is executed. At the end, an evaluated page as response is returned or the request is
forwarded to another handler.

The classes SessionLocal and Parameters offer useful static methods which allow
reading out the entity of the currently logged in user, the referrer url and get parameters
encoded in the url.

2.1.4 Plugins

Tricia is built in a modular way. An application consists of a core and can be extended by
one or more plugins. A plugin can use functionality from other plugins, therefore, these
form a dependency relationship. [BMN10]

Figure 2.4: Important Tricia plugins

9

2 Fundamentals

2.2 Model Representation of User Activity

Figure 2.5: Model representation of user activity

The user activity is represented by change sets, which are created each time, a user executes
a write operation on a persistent entity. The class ChangeSet is a persistent entity too and
can therefore be identified by its ID property. The class holds the time stamp of the activity
and records the action type. The action type, represented by ChangeSetType, is set on

• add, if the user created a new persistent entity

• edit, if the user edited features of an entity (examples for well known features are:
content of a page, description fields, tags, hybrid attributes)

• remove, if the user deleted an entity

• undelete, if the user restored a deleted entity.

Furthermore, a change set has an association to the concerned changed persistent entity
and to the users’ entity. Both associations are realised as OneRoles.

If the type of the change set is edit, then the set contains at least one change. All
changes are held in a property as a JSON4 serialised string. The method getChanges()
allows for retrieval of these by deserialising the string. It returns a list whose items are
instances of the abstract class Change. Several concrete classes inherit it (see also figure
3.2):

• AbstractGroupMembershipChange: The membership of a user was edited.

• DomainValueChange: The value of an enumeration property was edited.

• SimpleValueChange: The value of a property of a primitive type was edited.

• TagsChange: Tags were added or removed to/from an entity.

• HybridPropertyChange: A key-value attribute was edited.

4JSON = JavaScript Object Notation; a text-based user-readable standard for data interchange

10

2 Fundamentals

• RichStringChange: A formatted text was edited.

• RoleChange: The write and/or read access rights of an entity were edited.

Each change concerns exactly one feature and can be identified by the the combination
of the change set’s ID and the name of the feature. The change class holds the value of
the feature before the edit. In addition, it implements the (in the super class declared)
undo() method, which is used to revert an edit. A change set can roll an entity back
to an earlier state by invoking the undo() method on all contained changes. Another
important method which is implemented in the subclasses of Change is details(). It
returns a template substitution, which is used to generate an html overlay to display the
change graphically. The method getDetails() returns the template of details() as a
converted html string.

The class EventManager is responsible for creating the change sets and for storing
these in the database. For this action it uses the static method ChangeSet.getDifferences(),
which returns the changes between two states of an entity.

2.3 Full-text Indexing

For the full-text indexing Tricia uses the open source library Lucene5 developed by the
Apache Software Foundation. Lucene facilitates full-text indexing and search functional-
ity. It is highly scalable and allows creating powerful queries. It was originally written in
Java and was ported to many other programming languages.

The main idea behind the Lucene architecture is that an index exists which consists of
many documents. Each document contains text fields with data. In order for information
to be accessed later the field content can be stored. If the field is intended to be used as a
component in a search query, it must be indexed. For indexed fields an option to analyze
the data in advance exists. Then the tokens of the field’s value, instead of the whole string,
are indexed.6 The index can be searched with queries. Queries may consist of sub-queries
and of terms operating on fields. The results can be ordered by their relevance.

Figure 2.6: Structure of the Lucene index

5http://lucene.apache.org/java/docs/index.html
6http://lucene.apache.org/java/2_4_0/api/org/apache/lucene/document/Field.
Index.html

11

http://lucene.apache.org/java/docs/index.html
http://lucene.apache.org/java/2_4_0/api/org/apache/lucene/document/Field.Index.html
http://lucene.apache.org/java/2_4_0/api/org/apache/lucene/document/Field.Index.html

3 Analysis and Design

This chapter describes the results of the analysis and design phases. It contains the de-
tected requirements for an awareness component embedded in Tricia, similar implemen-
tations in other enterprise 2.0 systems, and design decisions and drafts for the user inter-
faces.

3.1 Requirements

The following requirements have been detected for the awareness component in Tricia.

• The UI presentation of changes should be improved. Right now, the information
view of each change type shows the value before and after the change. A more user-
friendly approach would be to point out the difference.

• Aggregation of changes: The Tricia user interface allows in-place editing, i. e. chang-
ing features of an object without leaving its view mode. However, each in-place edit
of a feature causes the creation of a new change entry. To keep the history view and
pages listing recent changes more clearly, similar changes could be merged.

• Users can watch objects. A dashboard allows managing the watch list and displays
changes concerning these objects.

• In addition to the dashboard there should be a further view which lists recent changes
of all objects which can be accessed by the user.

• Mail notifications regarding changes of watched objects will be sent periodically - if
the user wishes this. The notification service can be configured by each user.

In addition, there are further non-functional requirements:

• user-friendliness: The design should be user-centred. The UI interfaces need to be
clear and easy to use, and should be uniform. Furthermore, things should be kept
simple. To achieve these aims, the development process will attach importance to
the user interfaces. Mockups will be worked out in the early design phase.

• robustness: The implementation should be robust against incorrect user entries. Fur-
thermore, the access rights need to be taken into account throughout the whole de-
velopment process in order to avoid thrown program exceptions.

• stability: The component must be stable and reliable. Unit tests will help to detect
the achievement of this goal.

• efficiency: The realisation should be efficient, i. e. use resources economically and
allow a short reaction time.

12

3 Analysis and Design

Figure 3.1: Use cases for the awareness component from the user’s point of view

• extensibility: It should be possible to add further functionalities in the future with-
out great effort.

3.2 UI Presentation of Changes

For each change type a UI presentation to display details of a change exists. The existing
interfaces show the state of the feature before and after the edit. As mentioned before, this
could be improved. The new presentations set the focus on the difference between the two
states.

The presentations are used in an overlay which pops up, when a user clicks the blue
info icon next to a change entry. Right now, the info icons only exist in the version history
view of the entities. The new dashboard and recent changes view will use these icons too.
Moreover, the presentations are used in the compare handler of entities.

Generally, each overlay consists of a title and the content with the details. The title is
“Change:” followed by the name of the changed feature in capital letters.

In the following, for each of the change types, a screenshot of the overlay in the initial
system, a planned mockup, and a screenshot of the new interface are shown. It was mostly
possible to realise the implementation in a very similar manner to that of the planned
mockup. The implementation of the overlays is described as “exemplary” for the type
TagsChange in chapter 4.1.

13

3 Analysis and Design

Figure 3.2: Different change types

3.2.1 AbstractGroupMembershipChange

One change type is the AbstractGroupMembershipChange. It concerns group mem-
berships and is created if a membership changes. This type is a special case, because
it is split up into three different presentation classes. These all inherit the abstract class
AbstractGroupMembershipChange:

• AddGroupMembershipChange is used if a user or a group has been added to a
group.

• ChangeGroupMembershipChange is used if the membership state (“active” or “ap-
plies for”) and / or the comment of a member have changed. Unlike before, only the
changed property will be visible, if not both the state and the comment is changed.

• RemoveGroupMembershipChange is used if a user or a group has been removed
from a group or deleted completely.

The overlays show the type ChangeGroupMembershipChange.

Figure 3.3: ChangeGroupMembershipChange, before: The state “applies for” has been
changed to “active”, the comment has been removed.

14

3 Analysis and Design

Figure 3.4: ChangeGroupMembershipChange, mockup: same data as in figure 3.3

Figure 3.5: ChangeGroupMembershipChange, after: same data as in figure 3.3

3.2.2 DomainValueChange

Another type is the DomainValueChange. It is in charge of changed domain value prop-
erties. Domain values are attributes which have a specified range of available values.
Quite similar to the interface in the initial state, the new and the old value are displayed in
the new overlay.

Figure 3.6: DomainValueChange, before: The feature “How to apply” of a group has
changed.

15

3 Analysis and Design

Figure 3.7: DomainValueChange, mockup: same data as in figure 3.6

Figure 3.8: DomainValueChange, after: same data as in figure 3.6

3.2.3 SimpleValueChange

This change type is used, if a simple value has changed. A simple value is either a value
of a primitive type or a non-formatted string. DaisyDiff1, an open source Java library to
compare html files, was used to display the change in the initial state. However, as this
library is intended to compare continuous text, the result was not very user-friendly for
most data types. It was not even convincing for string values, because these are usually
very short when used as simple value. (Tricia uses mostly the RichStringProperty for
longer texts.) The new version shows the new value in bold and the old one below, very
similar to the DomainValueChange in chapter 3.2.2. If the data type is Boolean, the old
value is not shown, because it is simply the negation of the current value.

Figure 3.9: SimpleValueChange, before: The feature “Members are allowed to send mails”
is a boolean property. Its value has changed to true.

1http://code.google.com/p/daisydiff/

16

http://code.google.com/p/daisydiff/

3 Analysis and Design

Figure 3.10: SimpleValueChange, mockup: same data as in figure 3.9

Figure 3.11: SimpleValueChange, after: same data as in figure 3.9

3.2.4 TagsChange

A TagsChange is used, when a standard tag or a type tag has been added to or removed
from, an entity.

In the initial state, all standard and type tags2 of the old and of the new entity version
were displayed. This might not be the best solution, if an entity has many tags. The new
change presentation contains only the difference by showing all added and all removed
tags. Column headings are hidden if no tags correspond to it; e.g. in figure 3.12 there is no
heading “Removed type tags”, because no type tag has been removed. The headings are
in singular or in plural depending on the number of tags listed below.

2A type tag is a tag, which marks wiki pages, which have the same attribute definitions within a wiki.

17

3 Analysis and Design

Figure 3.12: TagsChange, before: Two standard tags (“sebis”, “tum”) and a type tag (“lec-
ture”) have been added, a standard tag (“2010”) has been removed.

Figure 3.13: TagsChange, mockup: same data as in figure 3.12

Figure 3.14: TagsChange, after: same data as in figure 3.12

3.2.5 HybridPropertyChange

The class HybridPropertyChange is in charge of attribute edits. The attributes are used
in the structured content of pages in a hybrid wiki. Each attribute consists of a key and a
value. The value can be a single one or a list and might contain links as well. There is a
change, if an attribute is added to a page, removed from a page, or if the attribute’s value
is edited.

18

3 Analysis and Design

As in most previous versions of the overlays, in this one the values before and after the
edit were shown. Now in the new implementation it is checked, whether the old or new
value is null. If the old one is null, then the property has been added and is shown with its
value. If the new value is null, the property has been removed. Then the text “Removed
attribute.” and the old value are shown. If both values are not null, then the ones before
and the ones after are displayed.

Figure 3.15: HybridPropertiesChange, before: The hybrid attribute “Time” has been
removed.

Figure 3.16: HybridPropertiesChange, mockup: same data as in figure 3.15

Figure 3.17: HybridPropertiesChange, after: same data as in figure 3.15

3.2.6 RichStringChange

The RichStringChange is used for edits of rich string properties. These properties hold
text with formatting. An example for a feature of the type RichStringProperty is the
content of a wiki page.

19

3 Analysis and Design

In the initial state DaisyDiff was used to display the differences between two versions of
a formatted text. DaisyDiff shows the whole text with formatting and marks changed text
pieces. It is possible to jump through the modifications via the next link.

If a long text has been edited it might be better to focus on the changed parts, especially
if only single words have been altered. Therefore, another diff viewer called TriciaDiff
was implemented. (DaisyDiff is still available as a second option.) TriciaDiff focuses on
differences by picking out changed text pieces. These are displayed with their surrounding
context. Text changes are:

• pieces (new words, sentences or paragraphs) which were added. In the new TriciaD-
iff overlay these are marked by a light green background.

• pieces which were removed. These are displayed with a red background and are
crossed-out.

• formatting or non-visible information (e.g. the url of a link) which was changed. A
light blue background indicates this type.

• words, sentences or paragraphs which were replaced. The old text is displayed as a
removed piece followed by the replacement formatted like added pieces.

TriciaDiff abbreviates long changed text pieces in the centre. This is indicated by the
link “[. . .]”. If clicked, the overlay is reloaded and all previously abbreviated (non-context)
parts are expanded. The context is usually abbreviated as well, TriciaDiff’s abbreviation
algorithm tries to preserve whole sentences (if these are short) by cutting at sentence ends.

For reasons of clarity the original formatting of the text is removed and at most the first
five changes are visible, when opening the compare result. The rest of the changes can be
displayed by clicking the link “all changes”. Moreover, nearby changes (e.g. two added
words in different positions in one sentence) are merged into one change entry.

The use of the AJAX3 concept is being considered for the implementation of this tem-
plate. When a link is clicked (e.g. the link to expand abbreviated parts), it allows reloading
just the content while keeping the overlay open.

3AJAX: Asynchronous JavaScript and XML

20

3 Analysis and Design

Figure 3.18: RichStringChange, before: A part of a sentence and a paragraph have been
added, a single word has been removed.

Figure 3.19: RichStringChange, mockup: same data as in figure 3.18

21

3 Analysis and Design

Figure 3.20: RichStringChange, after: same data as in figure 3.18. The second insertion was
abbreviated in the centre.

For the implementation details see the chapter 4.2 (HTML comparison with TriciaDiff).

3.2.7 RoleChange

The last viewed type is the RoleChange. An instance of it is created, when one of the
following use cases occurs:

• A user or a group is added as an editor or as a reader to an entity (e.g. a wiki page).

• A user or a group is removed as an editor or as a reader from an entity.

• A wiki page is moved to another wiki (its space changes).

• A wiki’s main page is exchanged with another page.

In the initial state all editors/readers before the change (in the left column of the table)
and after it (in the right column) was shown. In the new implementation only added and
removed editors/readers are mentioned. Nevertheless, all editors/readers can be found
in the details view of the entity.

Figure 3.21: RoleChange, before: Two users have been added as editors, one user has been
removed.

22

3 Analysis and Design

Figure 3.22: RoleChange, mockup: same data as in figure 3.21

Figure 3.23: RoleChange, after: same data as in figure 3.21

3.3 Aggregation of Changes

Each persistent entity has a version history which enables comparisons with earlier states.
The history contains change sets. As already mentioned, every in-place edit leads to the
creation of a new change set. On this account many little change sets containing just one
change exist. An aggregation of similar sets would keep the history and pages listing
changes more clearly.

Two change sets can be considered to be similar if both

• were carried out by the same user

• are less than ten minutes between (the time span can be set in a constant)

• concern the same entity

• are of the type “edit”.

23

3 Analysis and Design

Figure 3.24: An entities’ version history with a lot of single changes

3.4 Dashboard

In general, a dashboard is a form of presentation. It displays the most important informa-
tion for the user on a single-screen page and allows monitoring of what is going on. The
information on a dashboard is updated regularly. [Tid11]

24

3 Analysis and Design

3.4.1 Realisations in other Systems

Figure 3.25: Dashboard of BusinessWiki4

In most other systems the information is usually presented as a combination of text and
graphics. Related data is often grouped in titled sections or panels which can be moved,
collapsed, or enlarged. The dashboard must fit on a single screen, so that it all can be seen
at a glance. [Few06]

Figure 3.25 shows the dashboard of the enterprise 2.0 system BusinessWiki5 as an exam-
ple. It contains configurable panels for ones own watch list, the latest changes, ones own
edits, the calendar, the rss feeds. . .

3.4.2 Planned Implementation in Tricia

The dashboard of Tricia will focus initially only on the awareness functionality. The planned
user interface consists of two areas:

• a box with watched objects

• a box containing changes belonging to the objects

In addition, there will be a link to the settings page which allows some configurations.

4http://onbusinesswiki.de/screen/bwi1.png Visited on July 18th 2011.
5http://onbusinesswiki.de/

25

http://onbusinesswiki.de/screen/bwi1.png
http://onbusinesswiki.de/

3 Analysis and Design

Figure 3.26: Mockup of the planned dashboard

Watched Objects

This box on the left contains a list of all objects6 watched. For each object the name is
shown as a link, so it can be opened by clicking it. The link contains an icon to indicate the
object type. Next to the link, there is a button (represented by a cross icon) to stop watching
the object. (The object is then removed from the list.) If the object is in a space, the name
of it is shown below. Confirmation messages will affirm the impact of user actions.

Changes

In the centre there is the main content of the dashboard.
There are planned two different views of changes: one called “Recent changes” (of

watched objects) and the other one “Changes since last visit”. Both views contain a num-
ber of change entries. In order to keep the Tricia interface uniform, the appearance of the
entries is based on the presentation of results in the search view. The entries are sorted by
the time stamp of the change.

At the bottom of both views there is a navigation control to show further results. It
contains a “next” link and some page numbers. There is also a “previous” link to move
one page back - of course, it is not visible when the first results are displayed. The number
of available pages is not visible, unlike in the search results, as it is not relevant here.

6The word “object” is used as an acronym for an instance of any content type. Content types are: wikis, wiki
pages, blogs, blog entries, directories, documents, comments. . .

26

3 Analysis and Design

View “Recent changes” The view contains a list of recently stored change sets which
concern the user’s watched objects. This view is visible by default when the dashboard is
opened.

Each change set is presented through an information block: In the first line there is the
name of the object as a link. Below there is the list of the edited features. Like in the version
view of an entity, next to each feature there is the blue info icon. By clicking it, an overlay
is opened which shows further information on the change. Moreover, each entry contains
the editor’s name and a time specification. The presentation of the time depends on how
much time passed since the edit has been carried out. If the change was made less than
an hour ago, the number of passed minutes is shown; if less than 24 hours passed, the
number of hours is visible. Otherwise “yesterday” or the date is displayed.

In this view, the option “hide own changes” is available. It allows hiding own edits in
the list, so that the user can concentrate on what others did.

View “Changes since last visit” The second view, “Changes since last visit”, can be
shown by clicking the equally named link on the top.

This view lists all watched objects, which were changed since the user’s last visit to
them. Each object altered appears at most once in the list, regardless of the number of
changes. Each entry contains the object’s name and the features involved. As in the other
view, an overlay with further details can be shown for each changed feature. In addition,
the user can see how often the object was changed since his last visit and who the last
editor was.

The purpose of this view is to show the difference between the current and the user’s
last known state of an object. It is less important here to get to know, when and by whom
it was edited. The option to hide own changes is not appropriate in this view, therefore, it
is not available.

3.5 Recent Changes

While the dashboard is only about objects watched, a second page exists whose aim it is to
show recent changes of all objects, which can be accessed by the user.

3.5.1 Realisation in other Systems

Most enterprise 2.0 systems have functionality to list changes made a short time ago. Three
examples were picked out and are described below.

Wikipedia

The encyclopaedia project Wikipedia7 uses MediaWiki as the underlying wiki software. In
Wikipedia each page is represented by a source code. It contains the text, tables, outgoing
links, and categories. Therefore, each change concerns the code.

To view the activity of other users the page “Recent changes” exists. It is often used by
administrators to detect vandalism.

7http://en.wikipedia.org/

27

http://en.wikipedia.org/

3 Analysis and Design

Changes are described by a line of text and contain the following information:

• name of the wiki page (as a link)

• time when the change happened

• accumulated number of added and removed characters to indicate the change size

• editor (with a link to his profile)

• short summary of the change (title of the changed paragraph and/or a comment by
the user) (optional)

In addition, there are two links: “diff” links a page, which displays the difference (before-
after-comparison), “hist” links the version history of the wiki page.

Some filtering options, such as hiding minor edits, hiding changes of anonymous or
logged-in users, selecting namespaces. . . are offered.

Figure 3.27: Recent changes view of the English Wikipedia8

Ubuntu Wiki

The wiki of the web portal ubuntuusers.de9 contains tutorials on and trouble-shooting for
the operating system Ubuntu. The wiki is running on a python application called Inyoka.

8http://en.wikipedia.org/wiki/Special:RecentChanges Visited on July 18th 2011.
9http://wiki.ubuntuusers.de/

28

http://en.wikipedia.org/wiki/Special:RecentChanges
http://wiki.ubuntuusers.de/

3 Analysis and Design

Figure 3.28: Recent changes view of the wiki of ubuntuusers.de10

As pictured in figure 3.28, changes are displayed in a three-column table with the fol-
lowing details:

• time (or time span) when the change was made

• path of the concerned wiki page composed by its namespace and name. Next to it,
there is a number in brackets which indicates the number of single edits.

• editor’s comment and his name (for each single edit)

A special characteristic is that edits within a specified time span are grouped.

Wikispaces

Wikispaces11 hosts millions of wikis for private users, companies and institutions. Recent
edits are contained in a table view. Compared with the other two views, it has the best
filter functionality: it allows selecting changes by the type of the object (page, message,
comment, file, tag, member), to specify a date range, and to filter by user name.

Next to the name of the page changed there is either its content (if it is not extensive) or
the link “(view changes)”.

10http://wiki.ubuntuusers.de/Wiki/Letzte_%C3%84nderungen Visited on July 18th 2011.
11http://www.wikispaces.com/

29

http://wiki.ubuntuusers.de/Wiki/Letzte_%C3%84nderungen
http://www.wikispaces.com/

3 Analysis and Design

Figure 3.29: Recent changes view of Wikispaces’ wikis12

3.5.2 Planned Implementation in Tricia

After having considered the interfaces of other systems, the following interface has been
developed. Its layout is intended to be similar to the search result page. On the left there
is a sidebar with filter options to restrict the result set. In the centre further restrictions can
be selected (at the top), below there are the results.

Sidebar

The sidebar itself is composed of fold-away boxes. Each box can be open or collapsed, so
that only its heading is visible.

Space Some object types (wiki pages, blog entries) are held in a space. It is possible to
select a space by clicking its name. Then it is typed in bold and only objects of it appear in
the results. Like in the Tricia search at the most one space can be chosen. The selection can
be dropped by a second click on it. If no space is chosen, the filter is not applied.

Date It is possible to restrict entries based on the time stamp of the edit. A time interval
can be determined by filling the field for the start date (“after”) and/or the field for the
end date (“before”). Each interval border is only active, if the corresponding check box on
the left is checked. This filter is disabled, if both check boxes remain unchecked.

Change Type A filter to view only add events, or only edits, or only delete events can be
used. The default selection of this combo box is “all change types”.

Other Like in the dashboard it is possible to filter out own changes. By default the box is
unchecked. A change of the check state takes effect immediately.

12http://enterprisetwozero.wikispaces.com/space/changes Visited on May 29th 2011.

30

http://enterprisetwozero.wikispaces.com/space/changes

3 Analysis and Design

Figure 3.30: Mockup of the planned recent changes page

Centre

In the centre there are further filters and the results:

Further Filters, Sorting In addition to the already mentioned filters, results can be lim-
ited by the object’s name. The name can be entered in a text box, which shows suggestions
while typing. Right next to that there is a box to specify the sort order; the available alter-
natives order by change date or by name.

Tags are another way to constrain the results. The tags filter control is hidden by default;
it can be uncovered by clicking the button “Tag Filter”. It is composed of two boxes, a green
and a red one. Tags placed in the green box are required, out of it only entries having all
of the required tags are included in the results. The red box holds the tags which must
not appear in the result set. Below there is a tag cloud with frequently used tags which is
even visible if the tag control is hidden. The control supports typing in a box and drag and
drop.

Results Below the tag cloud there are the change events, which are sorted as selected
above. Ten results are visible per page.

The presentation is very similar to the dashboard’s “recent changes” view. By contrast,
next to the name of each object (except deleted ones) there is a “watch” link by which it

31

3 Analysis and Design

can easily be added to the personal watch list - or, if it is already in there, removed from it
(In this case the link is labelled “stop watching”).

3.6 Mail Notification

Another message channel for awareness purposes, beside the dashboard and the recent
changes page, is the mail notification.

3.6.1 Realisations in other Systems

Most enterprise 2.0 systems have the functionality to monitor pages. A change of a moni-
tored page usually leads to a notification mail. However, nearly all systems send the mail
immediately after the change. This results in many mails sent, which then flood inboxes.
Because of that, users might watch less objects or don’t use this feature.

Ubuntu Wiki

The previously viewed Ubuntu wiki offers such a notification service. The sent mails con-
tain for each page altered its name and the editor’s name. In addition, there are links to
get to the version comparison page and a short summary text describing the change (if
the editor specified one). At the bottom of the mail there is a link to unsubscribe from the
notification service.

Figure 3.31: Mail notification sent by the Ubuntu wiki

3.6.2 Planned Implementation in Tricia

The implementation in Tricia will follow another approach: Instead of sending a mail after
each change, a mail is sent in regular intervals (e.g. once a day) containing a summary of
the latest changes of watched objects.

The challenge is to inform the user about what happened without overburdening him
with information. Therefore, the mail should have a reasonable length. Of course, the
subject of the mail should already make clear what the mail is about. Moreover, there are
further restrictions, e.g. it does not make sense to use images, because most mail clients
don’t allow embedding external images by default for security reasons.

Some drafts for notification mails were worked out. These differ slightly in the level of
details. One draft looks as follows: There is a short block for each changed object. The

32

3 Analysis and Design

block contains the object’s name as a link, so that the user can get there with one single
click. Next to it, there is another link to get directly to the compare handler. In addition,
for each object the time stamp of the last edit and the last editor are given as information.
A short preview of the changed features is included in the mail. At the end of the mail
there it is specified how to unsubscribe from the notifications.

Figure 3.32: Planned look of the mail notification

33

4 Implementation

This chapter contains the implementation details.

4.1 Presentation of Changes

Firstly, the implementation of the UI presentation of changes is explained exemplary for
the type TagsChange. The implementation of each presentation includes the develop-
ment of the html template and of the corresponding handler, which dynamically substi-
tutes placeholders with data.

4.1.1 Template

As viewed in chapter 3.2.4, the tags change’s presentation informs about added and re-
moved tags (both for standard and type tags). The following is a simplified excerpt of its
template code:

[...]

$[hasAddedStdTags$
<tr>

<td>

</td>
<td>

$TEXT AddedStdTags$
</td>

</tr>
<tr>

<td/>
<td>

$[addedStdTags t$
$t.value$
$addedStdTags]$

</td>

</tr>
$hasAddedStdTags]$

[...]

Listing 4.1: TagsChange: excerpt of the template code

The excerpt shows the part which is responsible for the added standard tags.
$hasAddedStdTags$ is a conditional template which surrounds other template code.
The surrounded code is being suppressed, if no standard tags are added. Otherwise it
defines two table rows: The upper row incorporates an image with a plus icon and shows
the heading. The heading is provided by a print substitution ($TEXT AddedStdTags$),

34

4 Implementation

so that it can be set dynamically depending on the number of tags listed below (singular/-
plural). The second row contains a list substitution for the names of the added standard
tags.

The subsequent code of the removed standard tags and of the type tags looks very sim-
ilar.

4.1.2 Substitution

The class TagsChange is in charge of the substitutions. It has two variables of the type
Set<String> holding the standard tags and the type tags before the change. When the
user wants to see the details of the change, the method details() of this class is invoked
to calculate the content of the overlay. This method returns a template substitution:

@Override
public TemplateSubstitution details(PersistentEntity before, PersistentEntity after)
{

return new TemplateSubstitution()
{

@Override
public void init() { /* ... */ }

@Override
public void putSubstitutions(Template template) { /* ... */ }

};
}

Listing 4.2: TagsChange: method details()

In the overridden init() method of the inner substitution class the tags of the new
state are retrieved (lines 4 and 5) and then the before-after-comparison is started:

@Override
public void init()
{

Set<String> tagsAfter = Sets.newHashSet(after.adapt(Taggable.class).
getStandardTagNamesWithoutTypeTags());

Set<String> typeTagsAfter = Sets.newHashSet(after.adapt(Taggable.class).
getTypeTagNames());

diff = new TagsDiff(tagsBefore, tagsAfter, typeTagsBefore, typeTagsAfter);
}

Listing 4.3: TagsChange: template substitution’s init() method

The inner class TagsDiff calculates the difference: first, four hash sets are instantiated.
All standard tags from the state after are added to the set addedStandardTags and then
all tags from the state before are removed from it. This is done using the native methods
of HashSet, which are performed highly efficiently. As a result, in addedStandardTags
remain only the added standard tags. This is also done for the removed standard tags and
for the type tags. At the end, the sets are converted to lists and sorted.

After that, the template’s placeholders are replaced with the data worked out. This hap-
pens in the putSubstitutions()method of the template class. SimpleListSubstitution
is a self written class, which encapsulates parts of the iteration logic in order to improve
the reusability. The print substitutions for the headings are extracted to the method
putTextSubstitutions() in order to keep this method more convenient.

35

4 Implementation

@Override
public void putSubstitutions(Template template)
{
putTextSubstitutions(template);

template.put("addedStdTags", new SimpleListSubstitution()
{

@Override
protected Iterable getValues()
{

return diff.getAddedStandardTags();
}

});

//lots of further substitutions ...
}

Listing 4.4: TagsChange: excerpt of the method putSubstitutions()

4.2 HTML comparison with TriciaDiff

Figure 4.1: Overview of TriciaDiff

This section describes the implementation of the developed component TriciaDiff. Its
purpose is to compare two html strings. The comparison result is used in the overlay of
the RichStringChange1 (see chapter 3.2.6). TriciaDiff builds on the open source project

1The RichStringChange concerns changes of properties of the type rich string. In Tricia, rich strings are

36

4 Implementation

DaisyDiff2.

The implementation is described by viewing the three steps of the calculation. The calcu-
lation is started in the method generateOutput() of the class TriciaHtmlDiffOutput.

• Step 1: The StructureAnalyzer converts the input, which was partially prepro-
cessed by DaisyDiff, to an internal structure.

• Step 2: The StructureConsolidator merges changes, which are in close proxim-
ity.

• Step 3: The HtmlGenerator computes html results which can be displayed in the
overlay. This step includes the abbreviation of the results.

Each process step is first described generally and then for the following example:

• html content before: “This is the first sentence. There is another sentence. The first
one was not changed.
”

• html content after: “This is the first sentence. There is another sentence.
The first one was changed short time ago.
”

The formatting of the words “This is” has been changed to bold, the word “not” has been
removed, and “short time ago” has been inserted.

4.2.1 StructureAnalyzer

At the beginning, the StructureAnalyzer restructures the input data for the following pro-
cessing steps. It flattens the tree structure of the input and already merges text pieces of
the same change type directly following one another.

Figure 4.2: TriciaDiff: StructureAnalyzer

internal represented as html.
2http://code.google.com/p/daisydiff/

37

http://code.google.com/p/daisydiff/

4 Implementation

Input

The given input for this process step is a TagNode representing the root of a tree. Each
child of the root can either be a TagNode (and contains children again) or a TextNode.
A text node contains a token, which is a word, a whitespace, or a punctuation mark. In
addition, each TextNode has a modification type, which is represented as an enumeration
class. The enumerators are:

• ADDED: The token was added, i. e. the token is part of the second input, but is
missing in the first one.

• REMOVED: The token was removed; it is no more in the second input.

• CHANGED: The formatting of the token or non-visible html tag value (e.g. the url of a
hyper reference) was changed.

• NONE: The token is equal in both input values.

The class diagram in figure 4.3 illustrates the input. The classes form a composite pattern
with the abstract super class Node as component, the class TagNode as composite, and the
TextNode as leaf. [GHVJ09]

Figure 4.3: Input of the StructureAnalyzer

Output

The result is an instance of Document, whereas this class can be seen as a linked list con-
taining items. An item is of the generic class Element and has a reference to the previous
and to the next item. The content of the item is either a TextPiece (containing text) or a
WrapPiece (indicating that a paragraph ended).

Calculation

The analyzer starts by iterating over the children of the root node.

• If a child is of the type TagNode, then its tag name is retrieved and compared with
a collection of known html structure tags3. Due to performance reasons, the known
tags are stored in a static hash set. If the name is contained in the set, a wrap piece is

3e.g. br, p, h1, h2. . .

38

4 Implementation

added to the document. In any case the current method is then recursively invoked
for all children of this TagNode.

• If a child is a TextNode, then the method addText() is invoked to handle it. This
method uses the private class variable openTextPiece (type: TextPiece), which
holds the latest processed text of preceding nodes. If the change type of the child is
the same as the one of openTextPiece, then its text is added to it. If the child has
another type, the open piece is committed and a new one of the type of the child is
created. After having processed all nodes, the last open piece is committed too. Then
the document is returned as the result.

private void addText(TextNode node)
{

if (openTextPiece != null && openTextPiece.getChangeType() == node.getModification
().getType())

{
openTextPiece.appendSameTypedNode(node);

}
else
{

closeCurrentTextNode();
openTextPiece = new TextPiece(node);

}
}

Listing 4.5: StructureAnalyzer: method addText() to append text of the same type

Example

The document generated for the example input (see the beginning of chapter 4.2) contains
seven elements. The first six elements have a text piece as content, the last one has a wrap
piece, because the sentence ended with
. Text piece t1 shows the merge result of
the directly consecutive text nodes “This”, “ ” and “is”, which were all changed in the
formatting. The variable countNodes reveals how many nodes were combined.

Figure 4.4: Objects of the StructureAnalyzer calculation result for the example

4.2.2 StructureConsolidator

After having restructured the input, the next step is carried out: The StructureConsolidator
merges changes which are in close proximity.

39

4 Implementation

Figure 4.5: TriciaDiff: StructureConsolidator

Input

The instance of Document (the calculation result of the StructureAnalyzer) is the input of
the StructureConsolidator.

Output

The output of this pass is a list of ChangeTokens. For each (merged) change it contains
one or more list elements of the document. Each ChangeToken has a ChangeType: It is
ADDED if all elements have the modification type ADDED, it is REMOVED if all elements
have the modification type REMOVED and it is OTHER, if there is an element with the
modification type CHANGED or if not all elements have the same type.

Calculation

The calculation starts by iterating over the (list) elements of the document. The change
piece of each element is retrieved and appended to the class variable currentChange
(type ChangeToken) (which holds the current interim result). If the previously added
changes in currentChange have another type than the viewed piece, these are commit-
ted before and a new empty change token is prepared. The execution of this logic slightly
varies depending on the type of the element content:

TextPiece If the content is an instance of TextPiece, the method handleText() is
called: The method adds the piece to currentChange, if it concerns an edit
(ModificationType is unequal NONE) or if it is not an edit but short4 and between
two edits. Otherwise completeChange() is invoked to commit the current open change.
Listing 4.6 shows the code of this method.

4The length can be set in a constant variable. The default value is 14 text nodes (approx. 7 words separated
by spaces).

40

4 Implementation

WrapPiece If the content is an instance of WrapPiece, handleWrap() is invoked. If
the instance’s previous and following text piece has the same modification type, then the
wrap is seen as a part of the change and added to it. Otherwise completeChange() is
invoked.

private void handleText(Element<TextPiece> currElement)
{

TextPiece t = (TextPiece) currElement.getContent();

if (t.getChangeType() == ModificationType.NONE)
{

if (isOpenCurrentChange())
{

if (t.getNumberOfNodes() < LENGTH_OF_NOCHANGE_PIECE_FORCING_CHANGE_SPLIT
&& currElement.getNextElement() != null
&& currElement.getNextElement().getContent() instanceof TextPiece)

{
addToCurrentChange(currElement);

}
else
{

completeChange();
}

}
}
else
{

addToCurrentChange(currElement);
}

}

Listing 4.6: StructureConsolidator: method handleText()

Example

This process step added instances of ChangeToken to the object structure. The change
tokens combine near changes: In the example, the change c1 is only formed by t1, since
there is no other near change. However, c2 units the tokens t3, t4 and t5, because the
distance between the t3 (removed text) and t5 (added text) is low (countNodes of t4 is
only 1).

Figure 4.6: Objects of the StructureConsolidator output for the example

41

4 Implementation

4.2.3 HtmlGenerator

In step 3 html code is generated as output of the whole calculation.

Figure 4.7: TriciaDiff: HtmlGenerator

Input

The HtmlGenerator receives the list of change tokens and an instance of IFormatter as
input.

Output

The output of this processing step is a list of html pieces which are represented as HtmlChange.
This data class contains the html string and the change type (ADDED, REMOVED or
OTHER). The type is needed later in the overlay to choose the appropriate icon.

Calculation

For each change token of the input the method getHtmlFormattedText(), whose re-
turn result is used to instantiate a HtmlChange, is invoked. The implementation is as
following (the used methods are described below):

public String getHtmlFormattedText(Formatter formatter)
{

return getLeftContext(formatter) + getContent(formatter) + getRightContext(
formatter);

}

Listing 4.7: HtmlGenerator: method getHtmlFormattedText()

42

4 Implementation

Retrieving the Context The left and right context of a piece is gathered with the corre-
sponding methods. Firstly, getLeftContext() retrieves the first element of the current
change token. An element has a reference to the element on the left and on the right (see
figure 4.6). Then the reference to the left is used to get the prior element. Subsequently, the
prior element’s left reference is used to move further left in the linked list. This is repeated
until

• a specified number of nodes is reached, or

• a wrap node is identified and the already gathered text is not empty, or

• the list doesn’t contain anymore elements.

This calculation for the right context works analogically. Before the text is returned, it is
cut by the abbreviation algorithm. This is described in chapter 4.2.4.

Retrieving the Content The method getContent() retrieves the content of a change
by concatenating the text of all elements of the change token. Before formatting the text, it
is abbreviated in the centre if its length exceeds the specified one. Then the class
DefaultFormatter carries out the formatting by adding html tags. This class imple-
ments the interface IFormatter. The strategy pattern makes it possible to use other for-
matting strategies by switching the formatter class.

Then the HtmlGenerator returns the html changes.

Example

The object diagram below shows the result of the html generation for the example.

Figure 4.8: Objects of the HtmlGenerator calculation result for the example

4.2.4 Abbreviator

The class Abbreviator is used by the DefaultFormatter to abbreviate the content (if
the length exceeds the specified value) and the context of a change piece. The behaviour
of the abbreviation algorithm can be configured by some constants:

CUT_INSIDE_MAX_WORDS
[maximum length of the content of a change piece until it is
abbreviated in the centre]
default value = 22

43

4 Implementation

unit = words
CUT_OUTSIDE_MIN_WORDS

[minimum length of the context on one side (might be fallen short off
if not enough words are available)]
default value = 3
unit = words

CUT_OUTSIDE_DESIRED_WORDS
[number of words used for the context if no preferred cut point
(sentence end or beginning) is detected]
default value = 6
unit = words

CUT_OUTSIDE_MAX_WORDS
[maximum length of the context]
default value = 9
unit = words

CUT_OUTSIDE_MAX_CHARS
[maximum number of characters the context can have (does usually not
take effect with the default value of CUT_OUTSIDE_MAX_WORDS)]
default value = CUT_OUTSIDE_MAX_WORDS * 12
unit = characters

Cutting the Content

If the content of a change is longer than CUT INSIDE MAX WORDS words, text is cut out
from the centre. At the cutting point “[...]” is inserted as a link. (By clicking the link a
non-abbreviated version will be shown.)

Cutting the Context

When cutting the context, the abbreviation algorithm tries to keep whole sentences or to
cut between subordinate clauses. Therefore, it attempts to identify the beginning of a sen-
tence (respectively a sentence end if it is the right context) between the words on position
CUT OUTSIDE MIN WORDS and CUT OUTSIDE MAX CHARS. This is mainly done by search-
ing characters such as “.”, “,”, “!” . . . If a preferred cutting point is found, then it is used to
cut, otherwise the context is shortened at the position CUT OUTSIDE DESIRED WORDS.

4.3 Aggregation of Similar Change Sets

In chapter 3.3 criteria for similar change sets were defined. Another technical constraint
has to be added to these criteria: A (merged) change set can contain at the most one change
of the type GroupMembershipChange.

If a user edits a persistent entity, the entities’ applyPersist() method is invoked. It
updates the data in the database, creates a new change set and hands the set over to the
EventManager.

44

4 Implementation

Figure 4.9: Sequence diagram showing the persist pass of change sets5

Now the method getSimilarChangeSet() of the event manager checks whether an
earlier change set exists, which fits the similarity constraints. As the similarity check is
realised after every edit, only the last change set has to be reviewed.

If exists one, it is returned and merged with the new change set: To do so, the edited
entity is retrieved and a writeable copy of it is created. All changes of both change sets
are undone on the copy to get to the state before the changes. Then the static method
ChangeSet.getDifferences() is invoked to get the difference of the two states as
single changes. These are assigned to the earlier change set. Then the time stamp is ad-
justed and the set is updated in the database. There is the special case that there is no
difference between both entity states, because the second edit reverted the first one. Then
the previous change set which is already in the database is removed.

If there is no similar change set which fits the constraints the method returns null and
the new set is persisted.

The sequence diagram in figure 4.9 illustrates this procedure. The following code gives
an insight how the similarity check is carried out.

private static ChangeSet getSimilarChangeSet(Person person, PersistentEntity entity)
{

Calendar calendar = Calendar.getInstance();
calendar.add(Calendar.MINUTE, - TIME_DIFFERENCE_IN_MINUTES_CONFORMING_SIMILARITY);
Timestamp tenMinutesAgo = new Timestamp(calendar.getTimeInMillis());

5Note: Return messages of recursive calls are not modelled.

45

4 Implementation

Query q01 = new QueryEquals(ChangeSet.SCHEMA.prototype().entityUid, entity.getUid()
);

Query q02 = new QueryGreater(ChangeSet.SCHEMA.prototype().when, tenMinutesAgo);
Query q03 = new QueryEquals(ChangeSet.SCHEMA.prototype().type, ChangeSetType._edit)

;

Query q1 = new QueryAnd(q01, q02);
Query q = new QueryAnd(q1, q03);
q.addSortingCriterion(new Descending(ChangeSet.SCHEMA.prototype().when));

for (ChangeSet c : ChangeSet.SCHEMA.queryEntities(q, 1))
{

if (c.person.get() != null && c.person.get().equals(person))
{

return c;
}

}

return null;
}

Listing 4.8: EventManager: method to retrieve similar change sets

Figure 4.10: A version history with the same edits as in figure 3.24 but with aggregation

4.4 Change Awareness

This section is about the implementation of the signals component. It describes the in-
dexing and retrieving of events, the dashboard and the recent changes view, and the mail
notification service with its settings.

4.4.1 Event Stream

Each time a user makes an edit, a change set is persisted or updated in the database. After
that, the set is passed to the singleton class EventIndex which inherits LuceneWrapper.
This class is responsible to keep the Lucene index concerning the changes up to date. In
addition, it offers query functionalities.

Indexing

When an event has to be indexed, the addToIndex()method of EventIndex is invoked.
There exist also methods to update or remove events. These methods call getDocument()
of Event to create a Lucene document. The following fields are added to the document:

46

4 Implementation

EVENT_ID
[contains the ID of the change set and is used to identify the
document]
stored = true
indexed = true
analyzed = false

ENTITY_UID
[contains the UID (unique identifier) of the changed object]
stored = true
indexed = true
analyzed = false

PERSON_ID
[contains the ID of the editor (if a index rebuild is conducted, it is
possible that the person is null)]
stored = true
indexed = true
analyzed = false

TIMESTAMP_FOR_SORTING
[contains a time stamp which is used to sort the events when querying
these]
stored = false
indexed = true
analyzed = false

READ_ACCESS
[contains a string used to restrict the access]
stored = false
indexed = true
analyzed = true

EVENT_TYPE
[contains the change set type (NEW, EDIT, REMOVE, UNDELETE)]
stored = false
indexed = true
analyzed = false

ENTITY_NAME
[contains the name of the changed entity (this field is used to
display the name, even if the entity is no longer in the database
(e.g. when showing a delete event))]
stored = true
indexed = true
analyzed = true

SPACE_NAME
[contains the name of the entities’ space (if the entity has the
mixin InSpace)]
stored = true
indexed = true
analyzed = true

TAGS
[contains the tags of the entity as a concatenated string; used for
tag filtering]
stored = false
indexed = true
analyzed = true

47

4 Implementation

Then the document is put into the index using the methods of the super class LuceneWrapper.
A few persistent entities exist, whose objects are not supposed to be indexed, because

they shouldn’t appear in the event stream: These include instances of ContentWatch,
Settings, EventIndex. These classes implement the marker interface
DontIndexChangeEvents and will, therefore, be skipped in the indexing methods.

Figure 4.11: Class EventIndex

Querying

A lucene query consists of basic terms, which can be combined to complex queries. The
combination of terms and/or sub-queries can be done by adding these to a Boolean query.
When adding a clause to a Boolean query, the occurrence has to be specified: Occur.MUST
defines that the clause must occur, MUST NOT that the clause must not occur, and SHOULD
expresses that at least one of the sub-clauses has to be evaluated to be true.

The default maximum length of the query is 1024 clauses. If it is necessary, this value
can be increased by invoking BooleanQuery.setMaxClauseCount().

To retrieve events about watched objects for the dashboard, both the database and the
Lucene index are needed. However, an overlapping join query is not possible. Therefore,
all watched objects need to be loaded from the database and subsequently, the Lucene
query is built: It adds for each object a term which works on the entity ID to an OR clause.
If the watched object is a space, then changed items in the space should appear, too. To
do so, a further OR clause operating on the space field is added. (Listing 4.9) contains the
code which adds these clauses.) Further clauses are added if necessary (e.g. a MUST NOT
term to exclude the user’s own changes).

For events requested for the “Recent changes” page, a clause for each active filter is
appended to the query.

At the end an access rights filter is added to the query to avoid exceptions, which could
be thrown later (when reloading further data from the database) due to denied read access.

public void addConstraintWatchedObjects(Person person)
{

BooleanQuery bQ = new BooleanQuery();

for (ContentWatch currentWatch : person.watches.getAssets())

48

4 Implementation

{
Entity watchedObject = currentWatch.watchedObject.get().getEntity();

Term t;

if (watchedObject.hasMixin(Space.class))
{

t = new Term(Event.FIELD_SPACE_NAME, watchedObject.adapt(Space.class).
getName());

}
else
{

t = new Term(Event.FIELD_ENTITY_UID, watchedObject.getUid());
}

TermQuery tQ = new TermQuery(t);
bQ.add(tQ, Occur.SHOULD);

}

addSubQuery(bQ);
}

Listing 4.9: EventQueryBuilder: method which adds clauses to get events of watched
objects

Figure 4.12: A sample query for a dashboard: own changes are hidden, the pages “Home”
and “Advanced Seminar” and the space “Home Wiki” are watched

4.4.2 New User Interfaces

New user interfaces were developed for the awareness component: The dashboard visu-
alises edits which concern watched objects, whereas the page “Recent changes” shows all
edits.

Watch Action

In order to be able to use the dashboard, the watch list must contain some items. Tricia
allows now watching entities of the following types:

49

4 Implementation

• wiki page

• wiki

• blog

• user group

• document6

• directory

The classes representing these types have the mandatory mixin Watchable. In the pre-
sentation view of objects there is a link to the WatchHandler, which is invoked with the
entities’ ID. The action (start or stop) can be specified to enforce it, however, it is optional.
If not specified, the current state is reversed. It is not necessary to provide the id of the user,
because it can be read out by the handler using the method SessionLocal.getUser().
If a space is watched, all elements of the space are considered to be watched implicitly, too.

The execution logic either creates a new instance of ContentWatch, which holds an
association to the mixin of the entity and to the user, and stores it in the database, or deletes
the existing object. An object can be watched by many users and each user can watch many.
A deletion of the user or of the object is cascaded to the content watch. Figure 4.13 shows
the class diagram to this issue.

Figure 4.13: Class ContentWatch

Dashboard

The dashboard can be accessed via the main menu, which is visible on every page. How-
ever, the user has to be logged in to see the link and to be able to use the dashboard.

Figure 4.14: Link to the dashboard

6A document is a file in a directory.

50

4 Implementation

The dashboard links the page “All recent changes” and the notification mail settings. In
addition, there is a link to view the profile of the current user (because the dashboard link
in the menu replaced this link).

If the user watches no objects, a help page will be shown. It gives an introduction on
how to put objects on the watch list and to use the dashboard. Otherwise the dashboard’s
UI interface, illustrated in figure 4.15, is shown (see chapter 3.4.2 for the design decisions
of the mockup).

The implementation consists of the handler class and an html template. The template is
composed of:

• a list substitution for the watched objects: The user’s watched pages are queried
from the database and then used in the substitution method.

• a template substitution for the change events: For first, the Lucene index is queried
for the change events (of the watched objects). The number of requested results is
RESULTS PER PAGE7 + 1 in order to see, if the next link to a further page is appro-
priate. Then the ChangeEventHandler is instantiated, the events are handed over
to it and the template evaluation method is invoked. The result of the evaluation
replaces the event placeholders.

Figure 4.15: Screenshot of the dashboard

7RESULTS PER PAGE is 10 by default.

51

4 Implementation

The dashboard was not exactly implemented as planned. The view to show changes
since the last visit was not implemented. As this is the first iteration, the user acceptance
should be awaited first. However, it can be extended easily later, because major parts of
its logic are already implemented in other functionalities and can be used.

Recent Changes

In addition, the “All recent changes” page has been developed. Its template contains a
placeholder for the side bar with the filter options and for the change events. Both are
replaced with template substitutions.

Like in the dashboard, the replacement of the events is carried out using the
ChangeEventHandler. However, the presentation is slightly different. (For instance,
these events have a link to add an (unwatched) object to the personal watch list.) The data
handed over to the change event handler is retrieved by running a Lucene query, which
contains a clause for each (active) filter.

The page is reloaded when a filter changes. The filters are passed as get parameters,
therefore the selections can be bookmarked.

The user has to be logged in to see this page.

Figure 4.16: Screenshot of the recent changes page

ChangeEventsHandler

Both awareness pages unify the presentation of the events in the class ChangeEventsHandler.
This handler is invoked with an index query result. Then the template evaluation is run.

52

4 Implementation

In order to have all necessary information, the entity and the change set of each event are
loaded from the database (using the IDs in the event data). Afterwards the placehold-
ers of the template are substituted by the data. The time information is prepared in a
user-friendly format. This is done in the self developed DateUtil class, which generates
strings such as “a few seconds ago”, “8 minutes ago”, or “yesterday”.

Below the ten results per page, a navigation bar is shown, if further pages are available.

4.4.3 Mail Notification Service

Supplementary to the user interfaces (pull concept) characterised above, a notification ser-
vice (push concept) exists, which sends mails summarising the latest changes of watched
objects. Its logic is implemented in the class NotificationMailSender, which is peri-
odically invoked by a timer. Its run method iterates over all registered users. For each one
it checks, whether notifications are enabled and what the chosen time interval is. Available
time intervals are “once an hour”, “once a day”, and “once a week”.

53

4 Implementation

Figure 4.17: Activity diagram illustrating the creation of mail notifications

If the user’s chosen time interval applies to this run, all change events for his watched
objects, which were edited in the time span since the last sent mail, are retrieved from
the Lucene index. Then a method goes through the events, gets the IDs of the concerned
changed entities and loads these from the database. The result is held in a set, so that each
entity is contained at the most once.

Then the method getCalculatedContainer() is invoked for all objects in the set.
It checks, if the hash map objectChangesCache contains already a change comparison

54

4 Implementation

result of the object for the given time interval. If so, the result is retrieved from the map,
otherwise the change set is calculated. The calculation is as follows: all change sets con-
cerning this object, which have a time stamp in the interval, are loaded from the database
and then reverted on a copy of the watched object. Subsequently, the difference between
the copy (which represents the state before all changes of the time interval) and the current
state of the entity is computed. This is done via the static getDifferences() method
of the class ChangeSet. Afterwards the result is cached in the hash map to be reused for
other users with the same notification interval.

If there was at least one watched object, which was changed, the method sendMail()
is invoked with a list of the change sets as a parameter. This method calls getMail() of
the NotificationMail class, which evaluates the mail html template. The presentation
of the changes described by this template is not exactly the same as the one used in the
overlays of the version history. This template is optimised for the use in mails, on that
account it doesn’t contain any images and the changes are generally displayed more com-
pact. Different versions of it exist; these differ in the level of detail. The user can set his
preferred level in the mail notification settings (see chapter 4.4.3).

At the end, the computed html string is used in the body of the mail and subsequently,
the mail is sent. After that, the method runs the same procedure for the next user.

The notification mails were implemented exactly as planned, therefore the mockup of
figure 3.32 can be considered as a screenshot of the implementation, too.

private void sendMail(Person person, List<ChangeSetContainer> changesForThisMail)
{

Mail currentMail = notificationMail.getMail(person, changesForThisMail);

currentMail.init(person.login.get());

currentMail.sendMail();
}

Listing 4.10: NotificationMailSenderTask: method sendMail()

private ChangeSetContainer getCalculatedContainer(PersistentEntity entity)
{

final String uid = entity.getUid();

if (! objectChangesCache.containsKey(uid))
{

objectChangesCache.put(uid, calculateChangeSet(entity));
}

return objectChangesCache.get(uid);
}

Listing 4.11: NotificationMailSenderTask: method which gets the notification mail
change set for an entity

Settings

The settings page, which can be reached by a link in the dashboard, allows the configura-
tion of the mail notification service. At the moment it offers three options:

• Mail notifications can be enabled or disabled. The default value is disabled. The
following two options are only applied, if notifications are enabled.

55

4 Implementation

• The time interval of the notifications can be specified. Available options are “once
an hour”, “once a day” (default value) and “once a week”.

• There exist four different mail styles which differ in the level of details. The choice
”minimal” only lists the changed objects, but does not provide any information about
what changed. In contrast, “compact” names the changed features, but still sup-
presses the details. The next more meaningful choice “dynamic” shows details of
some change types, which are considered to be relevant to the user, because they
contain information about the object. The chosen types are RichStringChange
and HybridPropertyChange.8 In contrast, for instance the tags just support the
categorisation, but are not supposed to contain important information which the user
has to be aware about. Finally, the choice “complete” contains the details of each
changed feature not regarding the type. ”dynamic” is preselected by default.

Figure 4.18: Settings page to configure the mail notifications

8The choice can be changed in a constant class variable in the code without any effort.

56

5 Summary

The result of this thesis is the implementation of awareness functionalities in the core of
Tricia. These functionalities allow for tracing changes:

• A user can see all recent changes concerning objects that can be accessed with his
access rights. The list of the changes can be filtered.

• It is now possible to watch objects. Changes of these objects appear in the dashboard
view (pull concept) and can be signalled to the user via notification mails (push con-
cept).

• The aggregation of changes merges similar edits. This keeps the version history of
objects and the dashboard / recent changes page more clearly.

• The presentation of changes has been improved. It focuses on the difference between
the two states of an entities’ changed feature.

Further developments could be:

• A second dashboard view, which shows one summarised change entry for each
watched object, which was edited since the user’s last visit of it, could be added.

• The platform could be supplemented by a functionality to detect and display recently
added internal incoming links to an entity.

57

Appendix

58

Bibliography

[BMN10] T. Büchner, F. Matthes, and C. Neubert. Data model driven implementation of
web cooperation systems with tricia. In 3rd International Conference on Objects
and Databases (ICOODB), 2010.

[Coa05] T. Coates. Website. http://www.plasticbag.org/archives/2005/
01/an_addendum_to_a_definition_of_social_software/, 2005.
Visited on August 4th 2011.

[DB92] P. Dourish and V. Bellotti. Awareness and coordination in shared workspaces.
In Proceedings of the ACM Conference on Computer-Supported Cooperative Work
1992, 1992.

[DBMM93] P. Dourish, V. Bellotti, W. Mackay, and C. Y. Ma. Information and context:
Lessons from a study of two shared information systems. In Proceedings of the
conference on Organizational computing systems 1993. ACM Press, 1993.

[Few06] S. Few. Information Dashboard Design: The Effective Visual Communication of
Data. O’Reilly Media, 2006.

[GHVJ09] E. Gamma, R. Helm, J. Vlissides, and R. Johnson. Entwurfsmuster: Elemente
wiederverwendbarer objektorientierter Software. Addison-Wesley, 2009.

[infa] infoAsset. Product presentation of tricia. http://www.infoasset.
de/file/attachments/wikis/infoasset/tricia/110602%
20infoAsset%20Tricia%20EN.pdf. Visited on August 11th 2011.

[infb] infoAsset. Website. http://www.infoasset.de/
tricia-product-features. Visited on June 1st 2011.

[ISG09] J. Ibáñez, O. Serrano, and D. Garcı́a. Emotinet: A framework for the devel-
opment of social awareness systems. In Awareness Systems, pages 291–311.
Springer Verlag London, 2009.

[KR07] M. Koch and A. Richter. Enterprise 2.0: Planung, Einführung und erfolgreicher
Einsatz von Social Software in Unternehmen. Oldenbourg Wissenschaftsverlag,
2007.

[Löv91] L. Lövstrand. Being selectively aware with the khronika system. In L. Bannon,
M. Robinson, and K. Schmidt, editors, Proceedings of the Second European Con-
ference on Computer-Supported Cooperative Work, pages 265–277. Kluwer Aca-
demic Publishers, 1991.

59

http://www.plasticbag.org/archives/2005/01/an_addendum_to_a_definition_of_social_software/
http://www.plasticbag.org/archives/2005/01/an_addendum_to_a_definition_of_social_software/
http://www.infoasset.de/file/attachments/wikis/infoasset/tricia/110602%20infoAsset%20Tricia%20EN.pdf
http://www.infoasset.de/file/attachments/wikis/infoasset/tricia/110602%20infoAsset%20Tricia%20EN.pdf
http://www.infoasset.de/file/attachments/wikis/infoasset/tricia/110602%20infoAsset%20Tricia%20EN.pdf
http://www.infoasset.de/tricia-product-features
http://www.infoasset.de/tricia-product-features

Bibliography

[McA06] A. P. McAfee. Enterprise 2.0: The dawn of emergent collaboration. Technical
report, MIT Sloan School of Management, 2006.

[Ras00] J. Raskin. The humane interface: new directions for designing interactive systems.
Addison-Wesley Professional, 2000.

[RM09] M. Rittenbruch and G. McEwan. An historical reflection of awareness in col-
laboration. In Awareness Systems, pages 3–48. Springer Verlag London, 2009.

[Tid11] J. Tidwell. Designing Interfaces, volume 2. O’Reilly Media, 2011.

[ZDN] ZDNet. Website. http://www.zdnet.com/blog/hinchcliffe/
the-state-of-enterprise-20/143. Visited on August 3rd 2011.

60

http://www.zdnet.com/blog/hinchcliffe/the-state-of-enterprise-20/143
http://www.zdnet.com/blog/hinchcliffe/the-state-of-enterprise-20/143

List of Figures

1.1 Social software triangle by Koch/Richter . 2

2.1 Property types offered by Tricia . 6
2.2 Classes Asset, Entity and Mixin . 7
2.3 Group structure in Tricia . 7
2.4 Important Tricia plugins . 9
2.5 Model representation of user activity . 10
2.6 Structure of the Lucene index . 11

3.1 Use cases for the awareness component from the user’s point of view 13
3.2 Different change types . 14
3.3 ChangeGroupMembershipChange, before . 14
3.4 ChangeGroupMembershipChange, mockup 15
3.5 ChangeGroupMembershipChange, after . 15
3.6 DomainValueChange, before . 15
3.7 DomainValueChange, mockup . 16
3.8 DomainValueChange, after . 16
3.9 SimpleValueChange, before . 16
3.10 SimpleValueChange, mockup . 17
3.11 SimpleValueChange, after . 17
3.12 TagsChange, before . 18
3.13 TagsChange, mockup . 18
3.14 TagsChange, after . 18
3.15 HybridPropertiesChange, before . 19
3.16 HybridPropertiesChange, mockup . 19
3.17 HybridPropertiesChange, after . 19
3.18 RichStringChange, before . 21
3.19 RichStringChange, mockup . 21
3.20 RichStringChange, after . 22
3.21 RoleChange, before . 22
3.22 RoleChange, mockup . 23
3.23 RoleChange, after . 23
3.24 An entities’ version history with a lot of single changes 24
3.25 Dashboard of BusinessWiki . 25
3.26 Mockup of the planned dashboard . 26
3.27 Recent changes view of the English Wikipedia 28
3.28 Recent changes view of the wiki of ubuntuusers.de 29
3.29 Recent changes view of Wikispaces’ wikis . 30
3.30 Mockup of the planned recent changes page 31

61

List of Figures

3.31 Mail notification sent by the Ubuntu wiki . 32
3.32 Planned look of the mail notification . 33

4.1 Overview of TriciaDiff . 36
4.2 TriciaDiff: StructureAnalyzer . 37
4.3 Input of the StructureAnalyzer . 38
4.4 Objects of the StructureAnalyzer calculation result for the example 39
4.5 TriciaDiff: StructureConsolidator . 40
4.6 Objects of the StructureConsolidator output for the example 41
4.7 TriciaDiff: HtmlGenerator . 42
4.8 Objects of the HtmlGenerator calculation result for the example 43
4.9 Sequence diagram showing the persist pass of change sets 45
4.10 A version history with the same edits as in figure 3.24 but with aggregation 46
4.11 Class EventIndex . 48
4.12 A sample query for a dashboard: own changes are hidden, the pages “Home”

and “Advanced Seminar” and the space “Home Wiki” are watched 49
4.13 Class ContentWatch . 50
4.14 Link to the dashboard . 50
4.15 Screenshot of the dashboard . 51
4.16 Screenshot of the recent changes page . 52
4.17 Activity diagram illustrating the creation of mail notifications 54
4.18 Settings page to configure the mail notifications 56

62

Listings

2.1 Simple template file . 8
2.2 Simple print substitution . 8

4.1 TagsChange: excerpt of the template code 34
4.2 TagsChange: method details() . 35
4.3 TagsChange: template substitution’s init() method 35
4.4 TagsChange: excerpt of the method putSubstitutions() 36
4.5 StructureAnalyzer: method addText() to append text of the same type 39
4.6 StructureConsolidator: method handleText() 41
4.7 HtmlGenerator: method getHtmlFormattedText() 42
4.8 EventManager: method to retrieve similar change sets 45
4.9 EventQueryBuilder: method which adds clauses to get events of watched

objects . 48
4.10 NotificationMailSenderTask: method sendMail() 55
4.11 NotificationMailSenderTask: method which gets the notification mail

change set for an entity . 55

63

	Abstract
	Introduction
	Social Software
	Event-based Awareness
	Goal of this Thesis
	Structure of this Thesis

	Fundamentals
	Architecture of Tricia
	Model
	View
	Controller
	Plugins

	Model Representation of User Activity
	Full-text Indexing

	Analysis and Design
	Requirements
	UI Presentation of Changes
	AbstractGroupMembershipChange
	DomainValueChange
	SimpleValueChange
	TagsChange
	HybridPropertyChange
	RichStringChange
	RoleChange

	Aggregation of Changes
	Dashboard
	Realisations in other Systems
	Planned Implementation in Tricia

	Recent Changes
	Realisation in other Systems
	Planned Implementation in Tricia

	Mail Notification
	Realisations in other Systems
	Planned Implementation in Tricia

	Implementation
	Presentation of Changes
	Template
	Substitution

	HTML comparison with TriciaDiff
	StructureAnalyzer
	StructureConsolidator
	HtmlGenerator
	Abbreviator

	Aggregation of Similar Change Sets
	Change Awareness
	Event Stream
	New User Interfaces
	Mail Notification Service

	Summary
	Appendix
	Bibliography
	List of figures
	Listings

